Fungicides/biofungicides, Cultivar resistance, crop rotation for control of clubroot on canola

Peng G¹, Lahlali R¹, Hwang SF², Pageau D³ Hynes RK¹, Anderson K⁴, McDonald MR⁵, Gossen BD¹, SM Boyetchko¹, Strelkov SE⁶

 ¹Saskatoon Research Centre, Agriculture and Agri-Food Canada (AAFC), Saskatoon, Saskatchewan;
 ²Crop Diversification Centre North, Alberta Agriculture and Rural Development, Edmonton, Alberta;
 ³ AAFC Research Farm, Normandin, Quebec;
 ⁴Bayer CropScience, Regina, Saskatchewan;
 ⁵Department of Plant Agriculture, University of Guelph, Guelph, Ontario;
 ⁶Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada

Resistance is the cornerstone in clubroot management

- Effective
- Economical
- Easy to use

Research plots

Commercial fields

Resistant cultivars

- resistant, but not immune

- none of the R genes is effective for all races
- resistance can be eroded with a change of pathogen race structure

Questions:

- How long will the resistance last?
- Is resistance alone enough?
- anything else that may help?
- Resistance stewardship

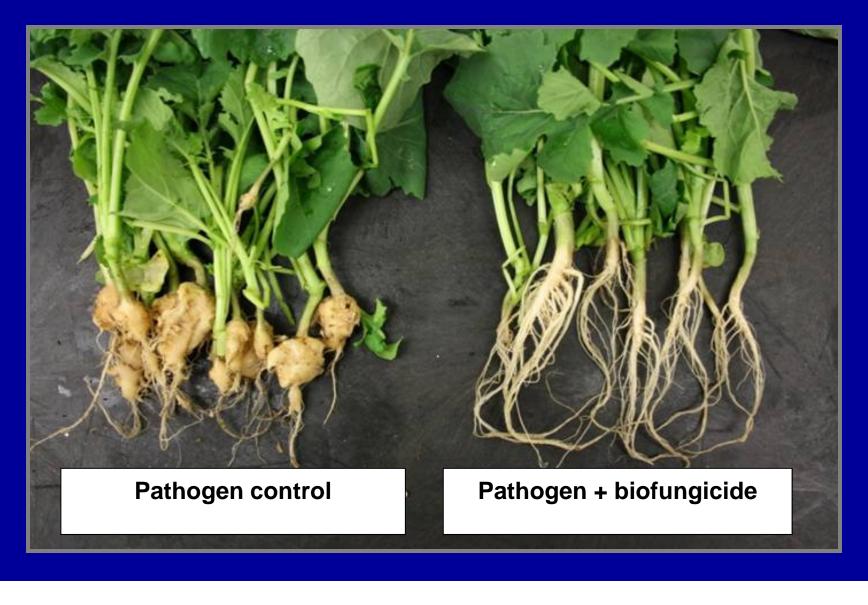
Additional control strategies

• Fungicides or biofungicides?

- Cheah LH et al. 1998. Soil-incorporation of fungicides for control of clubroot of vegetable brassicas. *Proc of 51st NZ Plant Prot. Conf.* pp. 130–133.
- Cheah LH et al. 2000. Biological control of clubroot on cauliflower with *Trichoderma* and *Streptomyces* spp. *NZ Plant Prot* **53**, 18–21.
- Narisawa K et al. 1998. Suppression of clubroot formation in Chinese cabbage by the root endophytic fungus, *Heteroconium chaetospira*. *Plant Pathol*. 47, 206–210
- Peng G et al. 2011. Potential biological control of clubroot on canola and crucifer vegetable crops. *Plant Pathol* 60:566-574

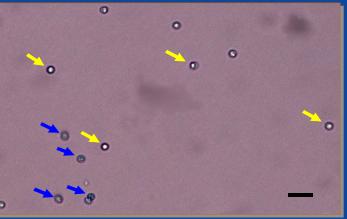
Crop rotation?

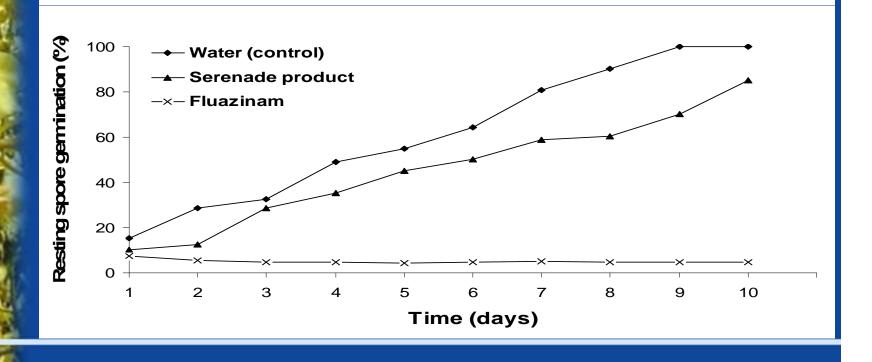
 Wallenhammar AC, 1996. Prevalence of *Plasmodiophora* brassicae in a spring oilseed rape growing area in central Sweden and factors influencing soil infestation levels. *Plant Pathol.* 45, 710–719.


Biofungicides & fungicides

- Serenade (Bacillus subtilis)
- Prestop (Clonostachys rosea)
- Allegro (Fluazinam)
- Ranman (Cyazofamid)

All applied as a liquid formulation




Selected products: soil drench was highly effective in controlled conditions

Modes of action for Biofungicides

Treatment	Avg. disease index (%)		
	Prestop	Serenade	
Formulated product	2 a	7 a	
Product filtrate (cell free)	11 a	33 a	
Spore/cell suspension	50 b	36 a	
Pathogen control	93 c	100 b	

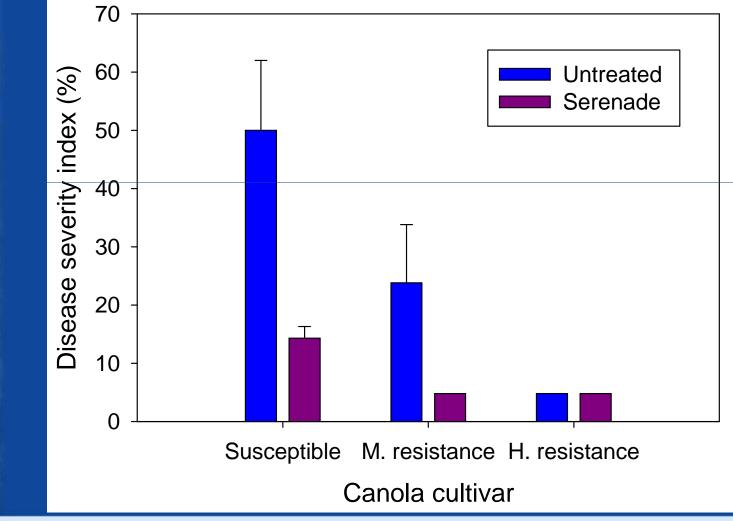
Field application of fungicides/biofungicides

Liquid formulation

e in-furrow

> 500 L/ha

Poer efficacy ter


clubroot control

Effect of soil dryness on efficacy (under controlled conditions)

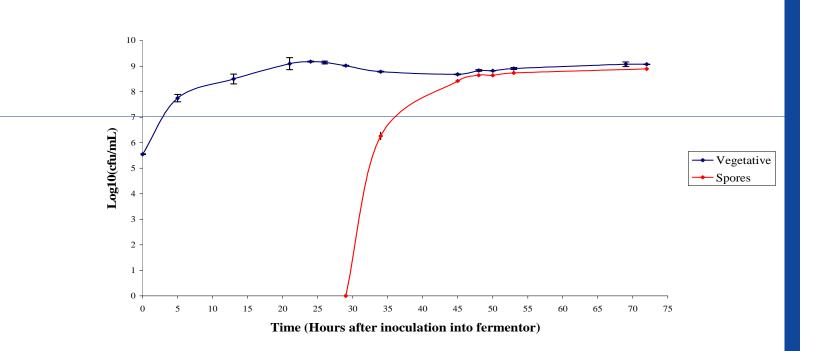
100 index (%) ⁰⁹
⁰⁰ Inoculated control Prestop Serenade Allegro severity Ranman 40 Disease 20 0 2 3 0 4 Duration of dryness (wks)

Using the biofungicide Serenade with CR canola cv. (n=2)

In controlled conditions

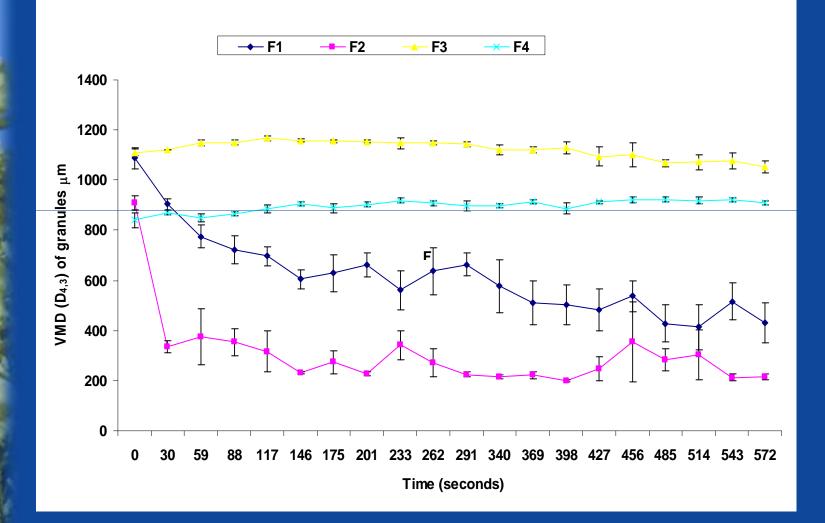
Granular formulation of Bacillus subtilis

GOAL: deliver a high population of the biopesticide to the canola rhizosphere
– maximize *Bacillus subtilis* "spore" production in the fermenter
– develop cost effective formulations


Formulation types

- Granules
- Seed coating

Fermentation of *B. subtilis* – optimal "spore" production


B. subtilis SER BATCH2011-5-30 Growth Curve of Vegetative and Spore formers in the BioFlo Fermentor

Formulation	Bacillus subtilis granule formulations Ingredients	B.subtilis (mL)
А	Bentonite clay, corn starch, peat	75
A2	Bentonite clay, corn starch, peat	100
В	Bentonite clay, pea starch, peat	100
С	Bentonite clay, corn starch, peat, CMC	100
D	Bentonite clay, corn starch, peat, CMC	100
Е	Bentonite clay, corn starch, peat, PVP	100
F	Exlite pea fibre, peat	250
G	Bentonite clay, corn starch, peat, PVP	100
G2	Bentonite clay, corn starch, peat, PVP	125
Н	Bentonite clay, corn starch, peat, CMC	125
I	Bentonite clay, exlite pea fibre, peat	175
I2	Bentonite clay, exlite pea fibre, peat	200
J	Bentonite clay, exlite pea fibre, peat, PVP	175
К	Bentonite clay, exlite pea fibre, peat, CMC	200
Z	Corn starch, peat	171

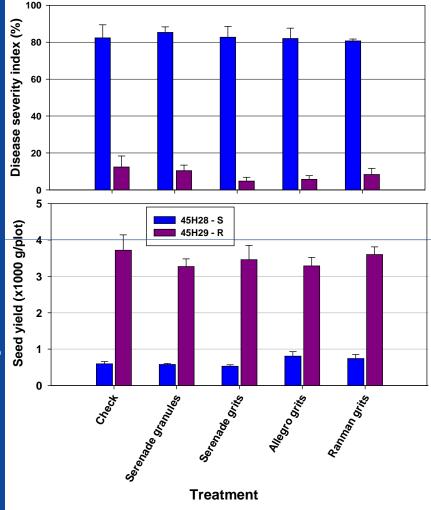
Disintegration rate of granules

Corn-cub-grits granular formulation

Easy to apply with canola seeding
 Granule source abundant & inexpensive
 Effective in controlled conditions
 Field application: 50 Kg/ha

2011 field trials I. Fungicide/biofungicide x cv. resistance

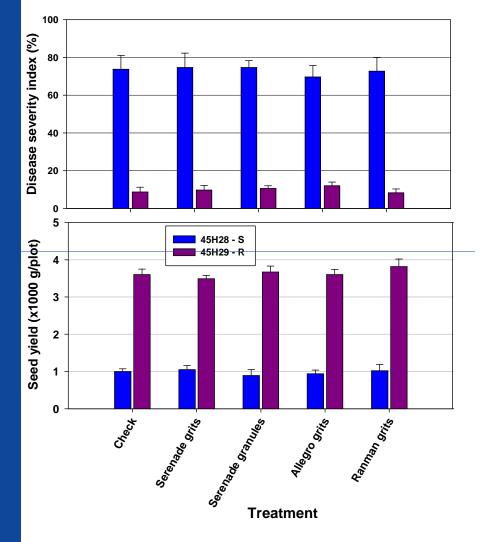
Leduc, AB
Edmonton, AB
Normandin, QC

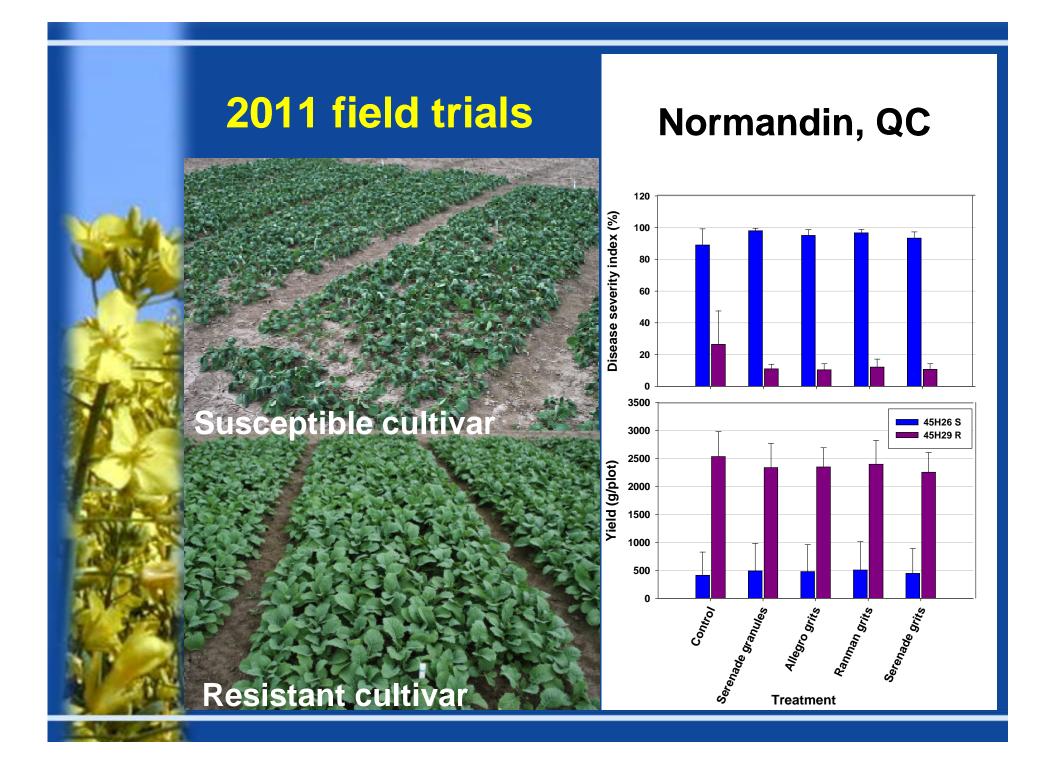

Two granular Serenade formulations
corn-cub grit carrier (granules) for Allegro and Ranman

CR and CS cultivars

Leduc, AB (2011)

- cv. resistance was highly effective; with substantial clubroot reduction and yield increase


 None of fungicide or biofungicide treatments was effective


Seeding date: May 28, 2011

Edmonton, AB (2011)

Almost exactly the same pattern as in Leduc, AB

Edmonton, AB Seeding date: June 2, 2011

II. Biofungicide seed treatment x crop rotation (Normandin, QC 2011)

Three crop rotation scenarios: 1) Canola-barley-canola (short rotation)

2) Canola-barley-barley-pea-canola (long rotation)

3) 11-year continuous barley (extremely long break)

Biofungicide seed treatment Low, medium, high, and very high rates (*B. subtilis*)

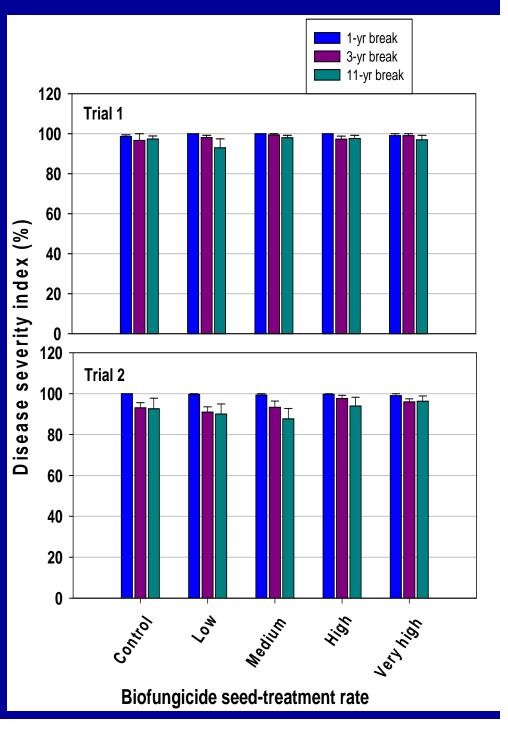
Bioassay & qPCR before and during trials Pathogen inoculum pressure in varying rotation **Table 4.** Estimate of *Plasmodiophora brassicae* inoculum pressure (soil-sample bioassay) and early pathogen development in canola roots using qPCR in plots of varying crop-rotation history (2011).^A

Crop rotation	Bioassay	qPCR (ng/g fresh root)	
(Year of break)	(%DSI)	Field trial 1	Field trial 2
1	74.8 a	11.6 a	2364 a
3	47.0 b	7.3 b	8.4 b
11	28.3 c	8.7 b	3.2 c

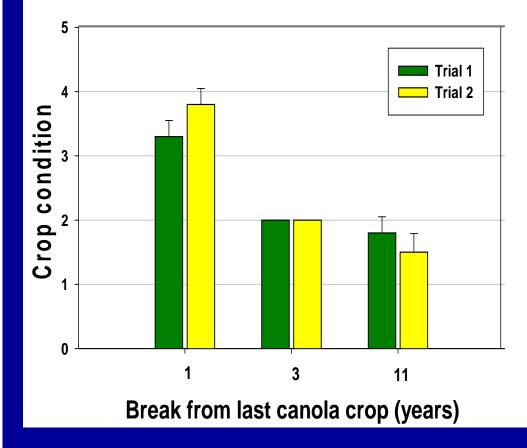
^A Soil samples were taken prior to the trials and root samples were taken from nontreated control plots 4 weeks after seeding.

Results Clubroot severity index

1-year break

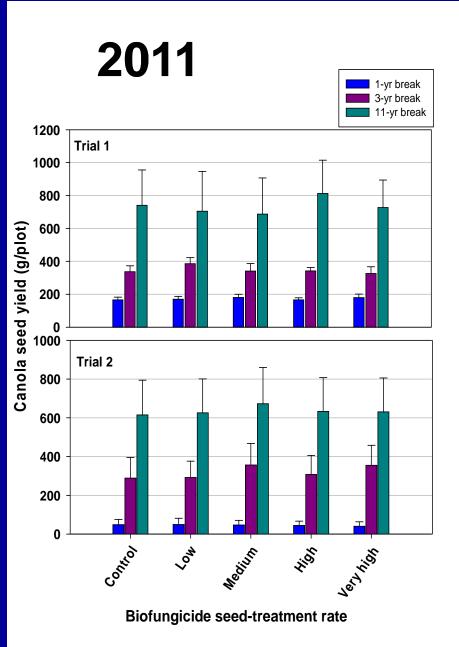

Canola – barley - Canola

3-year break


Canola-barley-barley-pea-canola

11-year break

11-years of continuous barley



Canola seed yield

- Seed treatment was of no benefit

- A longer break from a canola crop gave much higher yields in both trials

 Even a 3-year break doubled the year relative to 1-year break due to reduced impact to the crop by clubroot

Summary

Biofungicides/fungicides, in liquid or granule formulations, showed no efficacy against clubroot on canola under field conditions

Resistance cultivars demonstrated high value in clubroot management, especially under high disease pressure conditions

Long crop rotation (>4 yrs) alleviated clubroot impact on canola, reducing yield losses

Acknowledgement

- L. McGregor, D. Hupka, J. Geissler for tech. assistance
- ISK, Pioneer, AgraQuest, Bayer CropScience for providing materials and expertise
- AAFC CRMI, ADF, SaskCanola, ACIDF, CCC for providing funding